\[ \begin{align}

\sum_{i=1}^n i

\end{align}

\]

Calculating the scalar sum:\sum_{i=1}^n i

\end{align}

\]

1 + 2 + 3 + 4 ...

public class ScalarSum {

public int sum(final f f, int j, int n) {

int sum = 0;

for (int index = j; index <= n; index++) {

sum = sum + f.$(index);

}

return sum;

}

public interface f {

public int $(final int x);

}

public static class Fx implements f {

public int $(int x) {

return x;

}

}

public static class Fx2 implements f {

public int $(int x) {

return x*x;

}

}

public static class Fx3 implements f {

public int $(int x) {

return x*x*x;

}

}

}

System.out.println("Sum: " + new ScalarSum().sum(new ScalarSum.Fx(), 1, 100));

With haskell:

summation1 :: Integer -> Integer -> Integer

summation1 x y = summation' x y 0

summation' :: Integer -> Integer -> Integer -> Integer

summation' x y sum = if (y<x) then sum else summation' x (y-1) (sum+y)

sum2 :: [Integer] -> Integer -> Integer

sum2 xs y = foldl (+) 0 xs

main :: IO ()

main = print("Output : " ++ show(summation1 0 100) ++ " sum2= " ++ show(sum2 [0..100] 0))

sum(n=1 to 100) = 5050

## No comments:

## Post a Comment